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We explore the equilibrium mechanics of a binary lipid membrane that wraps around a spherical or cylin-
drical particle. One of the lipid membrane components induces a positive spontaneous curvature, while the
other induces a negative local curvature. Using a Hamiltonian approach, we derive the equations governing the
membrane shape and lipid concentrations near the wrapped object. Asymptotic expressions and numerical
solutions for membrane shapes are presented. We determine the regimes of bending rigidity, surface tension,
intrinsic lipid curvature, and effective receptor binding energies that lead to efficient wrapping and endocytosis.
Our model is directly applicable to the study of invagination of clathrin-coated pits and receptor-induced

wrapping of colloids such as spherical virus particles.
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I. INTRODUCTION

The cell membrane is more than a static barrier that pas-
sively separates the cytoplasm from the extracellular envi-
ronment. Rather, cellular membranes mediate signaling and
undergo dynamic remodeling to enable intra- and extracellu-
lar transport. For example, cells can secrete signaling mol-
ecules via exocytosis, viruses can enter host cells through
endocytosis [1] (see Fig. 1), and organelles can package pro-
teins for intracellular transport by budding. Enveloped vi-
ruses also exit cells by an exocytosis mechanism similar to
budding. To understand the physics and dynamics of these
processes, which all involve membrane deformation, we
must understand the physical properties of the cell mem-
brane. Many modern experimental techniques directly probe
the physical properties of the cell membrane. For example,
membrane surface tension has been measured using micropi-
pettes [2,3], laser tweezer traps [4], and atomic force micros-
copy (AFM) protocols [1,5]. Membrane bending rigidity can
also be inferred from micropipette experiments [6]. Other
investigations have sought to recapitulate membrane remod-
eling in model in vitro systems; the degree of wetting of a
latex bead held by an optical trap has been studied as a
model system for endocytosis [7].

Membrane heterogeneity is thought to be important not
only for biological signaling at the cell surface, but also for
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the mechanics of cell surface deformation, cell motility, and
intracellular transport [8]. Proteins and lipids that alter mem-
brane curvature can mediate membrane deformation. For ex-
ample, proteins that impart spontaneous curvature can be
embedded in the lipid membranes [9], they may bind to the
membrane as monomer, which the BAR domain does, or
they may polymerize into a curvature-inducing protein coat,
which the COPI and COPII complexes do [10]. Other mem-
brane components such as cholesterol [11] and membrane
lipids may have an intrinsic curvature. This topic is discussed
in depth in [9]. Multicomponent membranes have been ob-
served to phase separate [12], and budding induced by line
tension between lipid phase domains has been observed ex-
perimentally [13].

Specifically, we explore the effects of membrane hetero-
geneity, realized by lipids with different intrinsic curvatures,
on the mechanics of a membrane binding to either a long
cylindrical particle or a spherical particle. The wrapped par-
ticle may be a spherical virus, an approximately cylindrical
peptide chain, or a protein scaffold. Dynamin and BAR-
domain-containing proteins form cylindrical scaffolds while
COPI, COPII, and clathrin-adapter protein complexes form
spherical intermediate structures [9].

Early theoretical studies of membrane adhesion examined
the adsorption of a membrane tubule onto a cylindrical
groove [14]. The phase diagram of long tubular membranes

FIG. 1. Endocytosis can involve intermediates of qualitatively different shapes. (a) A clathrin-coated pit with tight wrapping and spherical
enclosure. (b) Endocytosis can also involve intermediates with long-tube-like processes. Both figures were taken from [56].
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adhering to a flat surface has been described [15] and the
force required to remove a long cylindrical bead adhering to
a flat membrane has been calculated in the small deformation
limit [16]. Adhesion of a spherical particle to a flat mem-
brane has been studied in depth [17,18] as has the adhesion
of a vesicle to a curved substrate [19]. In all of these studies,
single-component membranes were considered. Multicompo-
nent membranes that are unattached to substrate can assume
a variety of shapes; this phenomenon has been explored in
two dimensions [20] and in three dimensions for axisymmet-
ric vesicles [21,22]. Phase separation and domain formation
in multicomponent membranes has been studied extensively
[23-26]. A number of consequences of membrane phase
separation have been explored. For example, domain bound-
aries in membrane tethers have been shown experimentally
and theoretically to create weak spots, where the tether can
break under tension [27]. Also, budding induced by line ten-
sion between lipid phase domains has been described theo-
retically in both static [28—31] and dynamic [32] cases. Ad-
ditionally, much work has been done to understand the forces
that arise between embedded and bound membrane proteins
[33-37] as well as the membrane deformations that may re-
sult from these proteins [38—40]. A few studies have consid-
ered multicomponent membranes that adhere to substrates.
Under some conditions, a membrane that would not ordi-
narily phase separate will exhibit phase separation upon sub-
strate binding due to the reduction of entropy in the bound
region [26]. Entropic effects can also be important in
receptor-mediated endocytosis when adhesion of a mem-
brane to a particle is mediated by receptors that diffuse along
the membrane and bind to the particle. Studies of this pro-
cess have shown that the entropic cost of receptor immobi-
lization results in a optimum particle size for efficient en-
docytosis [41]. Finally, molecular dynamics simulations have
demonstrated lipid sorting in a membrane composed of a
binary mixture of two lipids where one lipid prefers positive
curvature and the other prefers negative curvature upon ad-
hesion to a curved surface [42]. In this paper, we explore this
phenomenon both numerically and analytically and consider
how the lipid sorting in turn affects membrane adhesion.
While there has been much theoretical work on the adhesion
of single-component membranes and on multicomponent
membranes, little work has been done on adhesion of multi-
component membranes.

To find the equilibrium shape of the cell membrane, we
minimize its free energy. We include a Helfrich bending free
energy, a surface tension energy, and a free energy arising
from local inhomogeneities in lipid composition and use the
Hamiltonian approach of [18,21] to derive equations govern-
ing membrane shape. In Sec. II and Appendix A, we derive
the Euler-Lagrange equations consistent with minimization
of the total free energy of a membrane wrapping around
cylindrical and spherical particles. Upon solving these equa-
tions, the point at which the membrane detaches from the
particle and the associated membrane shapes can be found.
In Sec. IIT A, we discuss the limit in which the lipid concen-
tration and the membrane curvature become decoupled, re-
viewing the results of Deserno [18]. In Sec. III B, we discuss
the limit in which concentration curvature coupling is very
strong, and present numerical and analytic results. In Sec. IV,
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we discuss the qualitative effect of phase separation and in-
homogeneous Gaussian bending rigidity on membrane
shape. Finally, we will summarize and discuss the implica-
tions of our findings in Sec. V.

II. CONCENTRATION-COUPLED MEMBRANE MODEL

In this section, we develop the free energy of a two-
component membrane as it wraps a rigid particle. The free
energy includes contributions from membrane bending (de-
scribed by the Helfrich free energy [43]), local variations in
lipid composition, surface tension, and coupling between
lipid composition and local membrane curvature. Biological
membranes are primarily composed of lipids that have a po-
lar head and a hydrophobic tail. Lipid membranes have two
leaflets and lipids are oriented such that their hydrophobic
tails point into the membrane, shielded from the polar envi-
ronment by the polar head groups, which are on the outside
of the membrane. We consider a membrane with two
curvature-inducing components: lipid A has a wide tail com-
pared to its head and induces positive curvature in the top
membrane leaflet, and lipid B has a has a wider head than tail
and induces negative intrinsic curvature in the top membrane
leaflet. Lipids A and B may be the only components of the
membrane, or they may be mixed with other lipid species
that lack intrinsic curvature. We define the order parameter
¢=p,— ¢dp where ¢, and ¢y are the area fractions of lipid A
and lipid B. We also assume that the lipid concentration in
the top membrane leaflet is ¢ while the lipid concentration in
the bottom membrane leaflet is —¢. The phenomenological
energy of partially wrapping a bilayer membrane about an
object is given by

E[C(S),#(S)]= fﬁ ds[g{C(S) ~ CLO)]F + o= wg(N)

+ %/|V¢|2+f[¢]] - 0A7. (1)

In Eq. (1), « is the local membrane bending rigidity, o is the
surface tension, and w is the binding energy per unit area
between the particle and the membrane. C(S) is the local
mean curvature at position S on the membrane surface,

C[#(S)] is the spontaneous curvature generated by a local
imbalance ¢(S) between the concentrations of the two lipids,
fl¢] is a local phenomenological free-energy functional of ¢
containing all contributions from excess concentrations,
Y|V |* is a line tension contribution from surface gradients
in ¢, and A7 is the area of the membrane’s projection on the
horizontal plane. The 0A; term in Eq. (1) shifts E such that
the energy of a flat membrane with no particle bound is
defined to be zero. The Lagrange multiplier A, which van-
ishes on the free, unattached membrane, is used to constrain
the bound part of the membrane to the surface of the particle.
The function g(\) is an indicator function that is unity within
the contact region (where N #0) and zero where the mem-
brane is unattached (where N=0). Although we present our
derivations in terms of a membrane wrapping a solid object,
clathrin-mediated endocytosis is also described by our model
if clathrin-coated regions of the membrane are treated as
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FIG. 2. (Color) (a) Membrane wrapping of a cylindrical particle of radius a. Here, s is the arclength from “south pole” of the particle to
a point on the membrane, g(s) is the angle that the membrane at position s makes with the horizontal, and s* is the point where the membrane
detaches from the particle. The horizontal distance from the midline is r, and the height of the membrane from the south pole is z. (b)

Membrane wrapping of a spherical particle of radius a.

though they were bound to a solid sphere. The growing pit
corresponds to progressive wrapping of the membrane and
the binding energy per area, w, can be defined as the inter-
action energy per unit area between the clathrin and the
membrane.

The most convenient mathematical representation of the
total free-energy density and the surface element dS depends
on the geometry being studied. If membrane deformation is
sufficiently small such that there are no “overhangs,” the
Monge gauge can be used to derive a fourth-order partial
differential equation describing the variations in height [44].
These equations can be linearized in the small distortion
limit to find explicit analytical expressions for the surface
height. In axisymmetric systems, extremization of E with
respect to C(S) and ¢(S) leads to a second-order nonlinear
ordinary differential equation involving the local mean and
Gaussian curvatures [45] and two-point boundary values.

In this work, we extend the Hamiltonian approach used in
[18] and described in [46]. Since we restrict our study to
two-dimensional and axisymmetric geometries, we can find
an energy density that depends on a single spatial variable. A
set of nonlinear, coupled, first-order ordinary differential
equations, with associated boundary conditions, can be de-
rived from the total energy density (Appendix A). The result-
ing boundary value problem can be solved using a shooting
method [18] or by using a two-point boundary value solver
in a large domain. In Sec. III, we use a two-point boundary
solver that employs a relaxation method, giving better effi-
ciency than shooting methods.

A. Cylindrical particles

In this section, we explicitly derive equations that de-
scribe a membrane wrapping around an infinite cylinder of
radius a lying with its axis parallel to the membrane. We
define g(s) as the local angle that the membrane makes with
the X axis, where s is the surface coordinate, measured from
the lowest point of contact (“south pole”) in the axisymmet-
ric system [see Fig. 2(a)]. Upon introducing the notation
Y'(s)=4,Y(s) and recognizing that ¢’(s)=C(s), Eq. (1) be-
comes E=2€[;L(q.,q", ¢}, ¢")ds for a segment of length € of
an infinite cylinder where

L(q.q".b.¢".\) = g(ql - ad)’+o(1-cos q) + %/¢’2+j[¢]

-wg(\) = \g' - 1/a) (2)

is the free-energy density. Here, a¢ is the local spontaneous
mean membrane curvature induced by local excess of either
lipid type. Physically, « is a measure of how conical the
lipids are. For “cylindrical” lipids, which induce no sponta-
neous curvature in the membrane, a=0. The o cos g term,
which for a flat membrane integrates to oA, sets the energy
of a flat membrane to zero, serving the same purpose as the
oAy term in Eq. (1). The functional f[ ¢] represents the en-
thalpy and free energy of mixing associated with the surface
concentration ¢ and will be approximated with a Landau
expansion with coefficients ¢; and chemical potential u:

_C 0 G35 C4g
A=+ S+ [+ muh )

Upon defining the dimensionless surface coordinate S
=s/a, the dimensionless length L=€/a, and the dimension-
less quantities

2y 2a°c
r=——>, 2= , ®=aadg,
aa kK K
Wl ol e g 2w 2ah
K kad'a aK K
~ 24% ~ FE
EZ_E? E:_5 (4)
K K
we can write
~ ’ 2 r 12
L=(q" -®d) +E(1—cosq)+5(1) +fl®]- Wg(A)
-Alg'-1) (5)

and E=2L[3L dS, where

C C
_3(I)3+_4

_Gs
APE)] =5 @7+ 707

Pt — gD, (6)
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From the Lagrangian [Eq. (5)], we use Hamiltonian ap-
proach [46] to derive a set of coupled, first-order differential
equations, with associated boundary conditions in Appendix
A. We solve these equations [Egs. (A3) and (A4)] separately
in the bound and unbound regions, and match the solutions at
the point of membrane detachment S* (also to be deter-
mined). By expressing the Lagrangian in a form that is valid
in both the region where the membrane is bound and the
region where the membrane is unbound, we can derive the
conditions on the detachment point S* that are necessary for
an extremal solution. The value of $* that minimizes the
system’s free energy simultaneously satisfies the conditions
on the detachment point and the boundary conditions. For
the membrane energy to be finite, the angle variable g(s)
must be continuous everywhere. The variables ® and @’ are
also continuous. The mean membrane curvature ¢’ is not
continuous, and the jump condition

lim{q' (5" +2) = g/ (5"~ )] =~ W (7)

is derived in Appendix B. The continuity of the other vari-
ables is discussed here as well. For a more general derivation
and a discussion of contact line conditions, see Ref. [47].
Since closed-form analytic solutions to the Euler-Lagrange
equations (A1) and (A2) derived in Appendix A cannot be
found, we present results of asymptotic and numeric analysis
in Appendix A and in Sec. III.

B. Spherical particles

Here, we derive equations describing the membrane as it
binds axisymmetrically to a spherical particle in the presence
of curvature-inducing lipids. This geometry is appropriate for
modeling the endo- and exocytosis of spherical virus par-
ticles and the binding of a spherical protein scaffold, such a
clathrin, to the cell membrane. The profile of a membrane
wrapping an infinite cylinder can be completely parametrized
by the arc length s and the angular orientation of the mem-
brane, ¢(s). However, for a spherical particle, we must intro-
duce an additional coordinate r(s), the radial distance from
the vertical axis of the sphere to the curve s [cf. Fig. 2(b)].
We define z* to be the engulfment depth, or the vertical
distance from the south pole of the sphere to the detachment
point, s*. For a membrane bound sphere, the energy is E
=2m[({L ds, where the density is given by

K sin

L(q.q" .. ¢".7" 1) = r{—<q’ +

2

2
rq—a¢) + (1 -cosgq)

+ 141+ §¢’2—wg<xq>}

+N,(r' —cos q) + \y(q" = 1/a), (8)

which, upon introducing the dimensionless quantities R
=r/a and

2 2a° 2\
= 2); . 3= ag, d=aadp, qu_q
a ada K K K
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)
becomes

sin g

2
Z(q’q',CD,(I)’,R,R’)zR[<QI+ —(I)> +2(1-cos g)

+f[®] + g@’z - Wg(Aq)]

+Ag(R" = cos q) + A (qg" = 1). (10)

With the definition Z:Zfﬁ, the dimensionless energy E

:%T: ffZ dS. At the detachment point S*, we have the fol-

lowing jump condition on ¢'(S):

lim=[q'(S* + &) — ¢'(S* — )] = — \W, (11)
g—0
identical to Eq. (7) from the case of a cylindrical particle (see
Appendix B). As in the cylindrical case, no closed-form ana-
lytic solutions to the Euler-Lagrange equations (A27) can be
found and we analyze the problem using asymptotic and nu-
meric methods in the following sections.

III. RESULTS

Here, we present analytic and numeric results for large
and small coupling strengths «. We show that the coupling
strength modulates lipid segregation. The order parameter
describing the strength of lipid segregation, ®, affects the
total free energy of the lipid membrane through two compet-
ing terms. On the one hand, the Helfrich part of the free
energy decreases as ® approaches the local mean curvature.
On the other hand, when there is no phase transition, the
Landau free energy f[®] increases as the lipids segregate. In
the weak coupling limit, where we identify & with «, the
Landau free energy influences local lipid concentration more
strongly than the Helfrich free energy and the lipids only
weakly segregate. In the strong curvature-concentration cou-
pling limit, where € ~1/a, the Helfrich free energy affects
local lipid concentrations more strongly than the Landau free
energy or the line-tension term and large local excesses of
either lipid can induce large spontaneous curvatures. Results
are derived by assuming that all dependent variables Y can
be expanded in a series

Y=Yo+ &Y+ EYVy+ -, (12)
where
E=¢g” (13)

and 7 is some power depending on whether we are expand-
ing about the weak or strong coupling limits. Asymptotic
formulas are derived for both cylindrical and spherical par-
ticles in each limit.

A. Weak coupling

In the limit @« ~¢&<<1, our problem reduces to that of a
single-component membrane wrapping a colloid. In this
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limit, the nondimensionalization relations [Egs. (4) and (9)]
imply I'~ C, ~&2> 1. The Landau free energy f[®] and the
line tension gCID’2 therefore affect local lipid concentrations
more strongly than the Helfrich free energy, and lipids A and
B segregate little. In this limit, ® ~ O(¢?) and the Landau
free energy and the line tension are both O(e?) and may be
neglected. The binary mixture only weakly affects the me-
chanics of adhesion-mediated wrapping in this limit. Previ-
ous studies have considered a single-component membrane
wrapping a sphere using the present approach [18], and the
results presented here are consistent with those results.

First, take the wrapped particle to be a long cylinder. To
lowest order in &€ ~a, =0 and the shape of the membrane
determined from Egs. (A3), (A12), and (A14) in Appendix A
is

qo(8) = * 4 arctan e >/25%C, (14)

This result was also presented in [48]. The first-order correc-
tion to ¢(S) due to the lipid segregation is O(g?) ~ O(a?).

To lowest order, the detachment point S* is given by

(1- \’W)Z}
— |

which determines the integration constant

251+ qo(S*)) \/g
n( V1 —qo(S%) 2 %0

Equation (15) is valid only for W= 1. For binding energies
W less than unity, the cost of bending the membrane around
the particle is too large for wrapping to be energetically fa-
vorable. Therefore, the particle will be unwrapped when W
=<1 and will begin to be partially wrapped when W>1.
Thus, the curve W=1 defines the boundary between the re-
gion of phase space where the particle is unwrapped and
where it is partially wrapped. While we might want to find
the boundary between the partially wrapped and fully
wrapped states from Eq. (15) by setting ¢(S*)=r, this is not
appropriate since Eq. (14) does not always yield physical
solutions. We have not explicitly included potentials or
forces by which the membrane interacts with itself; conse-
quently, some solutions result in “phantom membranes”—
i.e., calculated curves that pass through themselves if R(S)
[the membrane’s x coordinate at S; see Fig. 2(a)] becomes
negative. One such intersecting curve is shown in Fig. 3(a).

In Appendix A, we derive an expression for when the
particle is just fully wrapped as shown in Fig. 3(b), and this
curve is used to determine the boundary between the par-
tially and fully wrapped states. In total, there are three phases
for a membrane wrapping a cylindrical particle. The particle
may be unwrapped, partly wrapped, or fully wrapped. The
phase diagram for this system is shown in Fig. 3(c). Also
shown in Fig. 3(c) is the shift in the phase diagram (dashed
curve) when the concentration-curvature coupling « is
strong, which is studied in the next subsection.

Now consider the small-a limit for membrane wrapping
around a sphere. To first order, the equations found in this
limit (derived in Appendix A) are equivalent to those used in

qo(S*) = arccos{ 1- (15)

PHYSICAL REVIEW E 78, 021908 (2008)

X
unwrapped

fully wrapped

o 1 2 3 4 s 6

FIG. 3. (Color online) Wrapping of cylindrical particles. (a) For
certain values of W and X (here, 2=1, W=5.81), the solution is
unphysical because the membrane curve crosses itself. (b) The so-
lution curve for a particle that is just fully wrapped is plotted. The
parameters X =1 and W=5.65 [which were calculated using Eq.
(A20)] were used. (c) There are three possible phases for a cylin-
drical particle in the weak coupling limit (delineated by solid
curves) describing particles that are unwrapped (when W<1), par-
tially wrapped, or fully wrapped. The boundary between the par-
tially wrapped and fully wrapped phases was found numerically
using Eq. (A20). In the strong coupling limit («— ), only two
phases survive as shown by the dashed curve. For parameter values
that lie above the dotted curve, we expect the particle to be partly
wrapped; for parameters below the curve, the particle will be fully
wrapped. Compared to the weak coupling limit, wrapping is en-
hanced by lipid segregation when the coupling « increases.

[18]. In contrast to the cylindrical case where, in some solu-
tions, the membrane nonphysically intersects with itself, in
the spherical case, the bending energy R(g'+*%-®) di-
verges as R—0, effectively creating a diverging barrier at
the origin though which the membrane cannot pass.

For spherical wrapping, we find the four qualitatively dif-
ferent regimes, or “phases,” discussed in [18]. In phase I,
only the completely unwrapped state is energetically stable.
As we increase the binding energy W, a stable fully wrapped
state emerges in phase II [cf. Figs. 4(a) and 4(b)]. The stable
state arises because surface tension provides an effective line
tension that encourages wrapping near the fully wrapped
state. The binding energy per unit area, W, also encourages
wrapping. On the other hand, the bending energy (which is
equal to 4 in our nondimensionalization) makes wrapping
energetically unfavorable. Very roughly, the transition be-
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FIG. 4. (Color online) Wrapping of spherical particles. (a)—(d) The total energy of a membrane bound to a spherical particle is plotted as
a function of Z*=z*/a. Surface tension was set to %=1, and the binding energy W was varied. (a) In the first phase, the binding energy is
very low, and energy increases monotonically with Z*. (b) At higher binding energies, an unstable equilibrium emerges, and both the fully
wrapped state and the unwrapped state are energetically stable. (c) As W increases further, a stable equilibrium emerges as the unbound state
becomes unstable. (d) When W is sufficiently large, the system is driven towards a fully wrapped state. (e) Phase diagram for spherical
particles with no curvature coupling (solid curves) were determined numerically. The dashed curve shows the boundary between the two
phases—partial wrapping and full wrapping—that occur in the limit where coupling « between concentration and spontaneous curvature is
very large. Above the dashed curve, the particles are partly wrapped; below, they are fully wrapped. Strong coupling enhances wrapping.

tween phases I and II in the W-X phase diagram shows
where surface tension and binding balance bending. It is not
too surprising then that this transition curve looks qualita-
tively like S+ W=4,

Figure 4(b) shows that in the second phase a stable un-
wrapped and a stable fully wrapped state coexist, with a
potentially sizable energy barrier between the two states. In
this phase, the energy of the unwrapped state will always be
zero, while the energy of the fully wrapped state will be
2(4-W+3) [18]. We will soon show that the boundary be-
tween regions II and III occurs at W=4; thus, the energy of
the fully wrapped state in region II is always positive.

As discussed in [18], at W=4, the unwrapped state be-
comes unstable and a stable partially wrapped state emerges.
For small binding levels (Z* =0), the membrane binds to the
colloid at the expense of only the bending energy. Every-
where on the sphere, the mean curvature is 2 and the dimen-
sionless energy per unit area attributable to bending is 4. The
stable fully wrapped state remains and, in phase III, there are
two stable states: a partially wrapped state and a fully
wrapped state [cf. Fig. 4(c)].

Finally, as we increase W, the stable partially wrapped
state and the unstable state at the maximum of the energy
barrier annihilate each other at a saddle node, and the system
is driven towards the fully wrapped state [cf. Fig. 4(d)].
Roughly, for there to be a single equilibrium point at Z*=2,
W must dominate the combined effects of surface tension
and bending energy. The curve that defines the boundary
between phases III and IV, therefore, shows where the sur-
face tension and bending energy balance the binding energy.
This transition line is approximated by W= 3 +4. A complete
phase diagram for the wrapping of a spherical particle when
a=0 is shown by the solid curves in Fig. 4(e). For the strong

coupling limit, we will now see that the phase diagram is
modified (dashed curve) where only partially and fully
wrapped states can arise, similar to the cylindrical case.

B. Strong coupling

In this section, we consider the strong coupling limit
where a~ 1/¢. In this large-a limit, Egs. (4) and (9) imply
'~ C,~ &% Because the energetic and entropic cost of seg-
regating lipids, f[P] and gCD’Z, becomes small, the lipids
segregate in such a way that the spontaneous curvature C
=® approximates the local mean curvature everywhere,
causing the Helfrich free energy to become small. Thus, sur-
face tension and membrane-particle adhesion are the domi-
nant energies.

First consider a membrane binding to an infinite cylindri-
cal particle. Upon expanding all variables according to Eq.
(12), to lowest order, the membrane shape is governed by

1
¢

as shown in Appendix A. The left-hand side of Eq. (17)
scales as O(g?/&"), while the right scales as O(1). We con-
clude that e~ ¢ and that the width of the boundary layer
(and the radius of curvature with which the membrane bends
at the point of detachment) scales as \e ~ a2, There is also
a boundary layer in @ within the bound region at S=S*. The
width of this boundary layer scales as e ~ . The concen-
tration @ in the region of the membrane bound to a cylindri-
cal particle was calculated in Appendix A, and the width of
the boundary layer can be calculated from Eq. (A9).
Although Eq. (17) does not admit a simple analytic solu-
tion, we can determine S* in the limit of very large «. In this

gy’ =-% sin g, (17)
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limit, the energetic cost of segregating the lipids (param-
etrized by I" and C,) is small relative to all other energies in
the problem. It costs little to induce a spontaneous curvature
in the membrane, so the spontaneous curvature will be nearly
equal to the mean curvature everywhere. The surface tension
3, and the binding constant W dominate. We can further as-
sume that the energetic contribution of the free membrane is
negligible. The free membrane is flat except in a region of
width o2, We show in Appendix A that within the bound-
ary layer, (¢’ —®)~ O(1). In this region, the surface-tension,
Helfrich-free-energy, and line-tension contributions to the
Lagrangian are all O(1); the Landau free energy is O(e).
Thus, the energy highly curved boundary layer is O(e). Upon
using Eq. (2) to find an expression for the energy of the
system in the limit of large a,

E(S*)%J Z(q,q’,(D,(D')dS
0
S*

~ {Z[1 = cos go(S)] - W}ds. (18)
0

The value of $* that minimizes E(S*) must satisfy

dE =~ {3[1 - cos qy(5*)] - W}dS =0. (19)
Thus,
qo(S*) = cos_'( - VgV) (20)

Note that this is simply the Young-Dupré equation: the con-
dition on the contact angle of a membrane with surface ten-
sion but no bending energy. Strong coupling between ® and
spontaneous membrane curvature effectively removes bend-
ing energy from the Hamiltonian, and the boundary condi-
tion at S* is described by the Young-Dupré equation. Setting
q(S*)=m, we can determine when the particle is fully
wrapped in the strong coupling limit. The result W=23, is
plotted (dashed line) in Fig. 3(c) and represents the boundary
between the partly wrapped and fully wrapped phases. From
Fig. 3(c) and comparing Egs. (15) and (20), it is evident that
a membrane with lipids that strongly induce curvature will
always wrap a colloid more than a single-component mem-
brane.

Finally, consider a membrane wrapping a spherical par-
ticle in the large-a limit. As we found in the previous sec-
tion, the cost of bending the membrane is low when the
coupling constant « is large. Assuming that the membrane
bends with radius of curvature £€<<1 near the detachment
point, to first order,

1
¢

which is derived in Appendix A. Note that Eq. (21) is iden-
tical to Eq. (17). In the presence of strong coupling between
® and the mean curvature, the bending energy becomes

Igy’ =—X sin g, (21)
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unimportant, and the sphere’s azimuthal curvature does not
affect the membrane’s mechanics. In fact, in the large-«
limit, from Eq. (10), the energy of the system is

E= f Z(q,q',CI),CI)’,R,R')dS
0

g
~ f Ry[2(1 = cos gy) — W]dS. (22)
0

Equation (22) parallels Eq. (18), so for &> 1, the detachment
point that minimizes the spherical system energy also obeys
the Young-Dupré equation go(S*)=cos™!(1-W/3) given by
Eq. (20). The differential equation describing the membrane
shape is identical for a membrane wrapping spherical and
cylindrical particles, and the boundary conditions are also the
same. Thus, the ultimate membrane shape defined by ¢(S) is,
to first order, the same in the cylindrical and spherical cases.
When a> 1, the lipids segregate freely and the spontaneous
curvature will nearly equal the mean curvature. The cost of
bending the membrane effectively disappears. As shown in
Sec. IIT A, the boundary between phases IT and III (Fig. 4)
occurs when the binding energy just equals the bending en-
ergy demanded by the sphere’s curvature. When « is small,
the boundary between phases II and III occurs at W=4. Be-
cause we can neglect the energetic cost of bending the mem-
brane when « is very large, the boundary between phases II
and III moves to W=0. As in the cylindrical geometry, the
boundary between the partially wrapped and fully wrapped
phases is given by W=2%, and is plotted in Fig. 4(e) (dashed
line). Comparing the phase diagrams found in the small- and
large-a limits, it is evident that large coupling between lipid
concentration and spontaneous curvature not only enhances
membrane-particle wrapping, but also destroys all un-
wrapped phases.

Using the MATLAB boundary problem solver BVP4C [49],
we numerically solve for the membrane profiles and lipid
concentrations. We find that as we increase «, a weaker bind-
ing interaction (smaller W) is sufficient to wrap a particle a
specified amount [see Fig. 5(a)]. For relatively large a>1,
@ =2 in the bound region (to match the mean curvature); ®
decreases rapidly across the detachment point to generate a
large negative curvature to sharply bend the membrane to
horizontal. Far from the particle, @ relaxes back to zero. The
effect of @ on @ is shown in Fig. 5(b).

IV. DISCUSSION

In the preceding analysis, we ignored all terms third order
or higher in f[®]. In this section, we will discuss the condi-

tions under which we expect the approximation f[ ¢]= f2_2¢2
to be valid. We will see that if there is a local minimum in
flp] at ¢p=0, ¢ will be small in both the <1 and a>1
limits. All quantities scale similarly in the cylindrical and
spherical cases, so we will refer to examples from the cylin-
drical case for simplicity. In Sec. III A, we found that when
a<1, ®~ o?; therefore, by Eqs. (4), ¢~ a. Thus, the di-
mensional order parameter ¢ is small and f[ @] should be
well approximated by a quadratic function.
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FIG. 5. (Color online) Membrane shapes and concentration pro-
files for a partially wrapped sphere. (a) The profile of two free
membranes are plotted. The detachment point S*=1.3 was fixed.
With increased coupling constant « (and decreased C, and I'), the
membrane bends more sharply at the detachment point and be-
comes flat more quickly. The binding energy necessary to wrap the
specified amount was calculated and is significantly lower for larger
a (W=2.46 vs 5.45). In (b), ®(S) is plotted for the two profiles
shown in (a). With increased « (and decreased C,, I'), ® and P’
reach larger values. The dashed line marks the point at which the
membrane detaches from the sphere.

When the coupling between concentration and curvature
is strong (a~1/e>1), P~ Va within the region (of width
Ve) Wlth the sharpest curvature [Eq. (17)]. This means that
¢~ =~ Ve. It is somewhat counterintuitive that ¢ should be
small in a region where the mean membrane curvature is
large and the mean curvature is strongly coupled to ¢. From
Eq. (17), it is evident that the surface tension and the line
tension Z(qb )? ultimately balance. Because surface tension is
O(1), ¢' is necessarily O(1) and ¢~ . Therefore, in the
strong coupling limit, (¢’ )? dominates f[ ¢]; consequently,

ZzR{<q’+Si;q> +3(1 - cos q) + /] + ke Dl 2l
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¢<<1 and the quadratic approximation of f{¢] is also good
in the strong coupling limit. Moreover, in the strong coupling
limit, the solution will not depend strongly on the exact form
of f[¢] as the equation governing the membrane shape, Eq.
(17), is independent of f] ¢].

In either extreme a> 1 or @< 1, a local minimum in f{ ¢]
can be approximated by a quadratic function in ¢ about the
minimum ¢,. If we make the change of variables ¢=¢
— ¢y, it is straightforward to show that the shape [Eqgs. (A3)
and (A4)] are recovered. Higher-order terms may be required
in order to accurately describe the system when a~ O(1).

We will now discuss the relevance of phase separation. If
the system is at a temperature well below that of phase sepa-
ration, we assume that there are two local minima in the
Landau free energy f[®] at concentrations ®; and ®,. Sup-
pose |®,|<|®D,| and f[®,]=fP,]. Then, if |®,-2|<|D,
i i in the unbound
region. Suppose that the domain wall between the A-rich and
B-rich phases is of width & such that we can approximate the

line tension energy by I‘( )2 If the particle is nearly
fully wrapped, the energy of the system is approximately
E=~Ep—R*h,[3,W,®,]+Rhy[T",®,,®,, 5], where E is the
energy of a fully wrapped particle, R is the radial distance
from the contact point to the origin, /; is the effective energy
per unit area of bound membrane near the fully wrapped
state, and &, is some function describing the energy of the
phase boundary There will be a stable fully wrapped state
provided — (9R £ <0, and the system energy decreases as the
particle becomes fully wrapped (and R decreases). This will
always be the case for R<<1 as the energetic contribution
from the line-tension term will dominate in the limit of small
R. In strongly phase-separated regimes the configuration in
which there is only a stable unwrapped state (phase I) disap-
pears, and even for very small binding energies, there is a
stable fully wrapped state. The formation of vesicles by only
a phase separation line tension and without any binding in-
teractions has been studied in [32].

Finally, as seen in Fig. 1(b), long membrane necks are
sometimes observed during endocytosis. The model pre-
sented, even with two-component lipid segregation, yields
typically spherically shaped wrapping configurations and
cannot account for extended membrane necks. Since long
necks imply larger regions of negative Gaussian curvature,
we briefly consider coupling between local concentration @
and Gaussian bending rigidity kg in the spherical case. Here,
we consider a « that varies continuously. Budding of a two-
component membrane in which each component has a differ-
ent Gaussian bending rigidity has been studied [31,50,51].
An appreciable kg (relative to «) has been suggested by
recent simulations of protein-embedded lipid bilayers [34]. A
Lagrangian that includes coupling between «; and @ takes
the form

smg

- Wg(A,) |+ Ag(R" —cos q) + A (q" - 1), (23)
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FIG. 6. Membrane shapes near full wrapping. The parameters
%=1 and a detachment point at ¢(S*)=3 (to approximate full wrap-
ping) were used. Notice that when « is variable, the relaxation of
the membrane to a flat surface is more gradual and the region with
negative Gaussian curvature is extended.

The integral of the Gaussian curvature q’Si—;q over the do-

main equals zero when the membrane has no deformation,
and because the integral is a topological constant, it must
always equal zero. If kg is not constant, the system could
lower its free energy if

sin g

L kel @l

where S* is the region with positive Gaussian curvature and
S~ is the region with negative Gaussian curvature. In our
problem, the region of the membrane that is bound to the
sphere has positive Gaussian curvature, while the region
comprising the “neck” has negative Gaussian curvature. A
simple model for concentration-dependent x; can be illus-
trated with the form kg=(1+®?)~'-2, which allows «; to
vary between —2 and —1. In the bound region, ® is nonzero,
which lowers k;[®]. To minimize the energetic contribution
of Gaussian curvature, ®=0 in the neck (this maximizes
k[ P]). The larger region of Gaussian curvature that we ob-
serve in Fig. 6 when ®-dependent k. is included represents
the distance it takes for @ to relax to zero from its value in
the bound region. Although we see slightly longer necks, we
do not find tetherlike formation during wrapping and en-
docytosis, as seen in Fig. 1(b).

sin g

<fs— KG[(I)]q, R ’ (24)

V. SUMMARY AND CONCLUSIONS

We studied the effect of a binary lipid membrane on the
mechanics of wrapping a long cylindrical or spherical par-
ticle. In the case of long cylindrical particles, we found that
for some parameters, the solution curve of the membrane
was self-intersecting and unphysical. We found an implicit
formula for when the particle is fully wrapped and found that
in this state the membrane captures the particle and some
extra fluid volume. This is not the case with spherical par-
ticles, where the fluid membrane contacts the particle for
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arbitrarily large degrees of wrapping. When coupling be-
tween the spontaneous curvature of the membrane and the
lipids is large, wrapping is encouraged as the energetic cost
of bending the membrane is effectively lowered. In the limit
of very large coupling, we could analytically find the detach-
ment point S* in both the spherical and cylindrical cases. The
detachment point, as well as the membrane profile, were the
same in both geometries, given the same values of the sur-
face tension % and binding strength W.

Using numeric and asymptotic methods, we studied the
limits in which the coupling between the spontaneous curva-
ture of the membrane and the lipid concentration was weak
and strong. In the weak coupling limit, we found three
phases of behavior for cylindrical particles: the particles can
be unwrapped, partially wrapped, or fully wrapped. We
found four possible types of behavior for spherical particles,
consistent with the results of [18]. The particles could have a
single stable unwrapped or fully wrapped state, or they could
have two energetically stable states (fully wrapped and un-
wrapped, or fully wrapped and partially wrapped), with an
energy barrier between the two states. When the coupling «
is large, nonwrapped configurations are energetically ex-
cluded and wrapping is enhanced.

The ideas presented in our analysis can be directly applied
to virus entry and budding. The typical values for cell mem-
brane surface tension and bending rigidity are o
~0.006kzT nm~2 [3] and «x=10-20k,T [6], respectively. For
wild-type HIV-1, a typical size is a=50 nm [52]. According
to Egs. (4) and (9), 2=1.5-3~0(1). The assumption X,
=1 used in Fig. 4 is therefore physically reasonable. In Ref.
[52], the authors estimate the HIV-1 virus-membrane binding
energy w to be w=(0.07-0.14)kzT nm~2, which means W
~17.5-70>4, indicating that the virus particle is strongly
driven to the fully wrapped state and in phase IV. However, a
number of factors, from low receptor density to mutations in
the virus or cell receptors, could lower the effective W, per-
haps allowing the other three scenarios to arise. HIV-1, under
most conditions, enters through fusion rather than endocyto-
sis. Therefore, the conditions under which endocytosis is ob-
served may enhance the propensity for membrane wrapping,
in addition to decreasing the fusogenic properties of the
receptor-spike complex (CD4 and coreceptor bound to gp41)
[53].

Now consider the endocytotic entry of the human rhinovi-
rus serotype 3 (HRV3), a form of the cold virus. HRV3 binds
the membrane protein intracellular adhesion molecule-1
(ICAM-1), and the thermodynamics of soluble ICAM-1
binding to HRV3 have been studied. Since the free energy of
binding is (11-13)kT per complex formed [54] (with 60
binding sites on each virus) and the radius of HRV3 is a
=15 nm, the corresponding dimensionless binding energy is
W=5-13. Because HRV3 is much smaller than of HIV the
effective dimensionless surface tension is smaller than that of
HIV and is 2 ~0.1-0.2. From Fig. 4, we can see that these
parameters put wrapping of HRV3 in phase IV and the sys-
tem has only one stable equilibrium point, which is at Z*
=2 (fully wrapped).

Virus budding can also be viewed in terms of an interplay
between membrane mechanics and composition. Retrovi-
ruses bud by hijacking the cellular pathway normally used
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for the formation of multivesicular bodies. While some 25
proteins have been identified that are required for vesicle
formation and HIV-1 budding [55], how membrane curvature
is generated in the process is not well understood. Originally,
it was thought that interactions between membrane-
associated Gag proteins provide the energy necessary for
membrane deformation, but a number of genetic experiments
have complicated this view by showing that disruption of
domains of the Gag protein not involved in Gag-Gag inter-
actions can abolish budding. Furthermore, the conical lipid
LBPA, which carries intrinsic curvature, has been shown to
promote the formation of multivesicle bodies (MVBs) in
vitro and is thought to play a role in MVB formation [55]
and virus budding.

Because the dimensionless energy E for wrapping of
spherical particles is measured in units of k7= (30-60)kgT,
we expect that for some parameters thermal fluctuations in
the degree of membrane wrapping might be substantial [see,
e.g., Fig. 4(c)]. However, in the HIV example, the energy
barrier between the partially wrapped and fully wrapped state
is (15-30)kzT. Therefore, we would not expect the particle
to become fully wrapped except at exponentially long times.
Rather, we expect that the particle would remain in the en-
ergetically stable partially wrapped state until fusion occurs.
However, wrapping may be stochastic in the presence of
curvature-inducing lipid. Because most of the energy barrier
is attributable to membrane bending rather than to surface
tension, the barrier may be significantly reduced by the pres-
ence of curvature-inducing lipids, which have intrinsic cur-
vatures ranging from about —1 to 0.5 nm~' [9]. For example,
if a lipid inducing a curvature of 0.25 nm™' were to cover
10% of the area of the membrane in the bound region, the
bending energy would be reduced by ~85%, and particle
wrapping could be stochastic for moderate values of W. For
larger values of W, lipids with intrinsic curvature will serve
to facilitate wrapping even further, and we expect strongly
deterministic behavior when W is large.

Finally, one of the goals of this study was to understand
the qualitative effect of membrane heterogeneity on mem-
brane shape. In particular, we were interested in whether a
two-component lipid membrane could produce the mem-
brane tethers sometimes observed during endocytosis [Fig.
1(b)]. Such structures do not arise in our two-component
model, suggesting that more complicated mechanics involv-
ing perhaps active cytoskeletal processes [52] are required to
achieve significantly nonspherical wrapping.
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APPENDIX A: EULER-LAGRANGE EQUATIONS
AND ASYMPTOTICS
1. Cylinders

The momenta conjugate to the coordinates ¢(S) and ®(S)
in a cylindrical geometry are

PHYSICAL REVIEW E 78, 021908 (2008)

oL
Pq=g=2(6]'—¢)—/\,
oL ,
P¢=£=Fq> , (A1)

where L is taken from Eq. (5). The remaining equations of
motion derived from the Lagrangian are

oL
p,=—=2%sing
q (gq ’

)

oL 20q’ - ® A2
Po=" 0 == (61—)+(9q)- (A2)

Upon differentiating Eqgs. (A1) with respect to S and equat-
ing the result to Egs. (A2), we obtain the following second-
order equations:

2(4"-Pd")=sing+A’, (A3)
"_ ’ 07‘]‘[(1)]
e =-2(qg' - ®) + e (A4)

Associated with these equations are two independent
boundary conditions consistent with a flat surface far from
the adsorbed particle. For simplicity, we assume that the con-
centrations of lipids A and B are equal far from the particle,
implying

lim ¢(S) = lim ®(S)=0.

S—o0 S—o0

(AS)

From symmetry, two additional independent conditions arise
at §=0:

lirr(l) D'(8)=¢q(S)=0. (A6)
5—

Thus, ¢'(s) is bounded, and Egs. (A1) and (A2) imply that
® and @' are also continuous across S*. Finally, Egs. (Al)
imply that if there is a discontinuity in A across the detach-
ment point, in order for Py to be continuous across the de-
tachment point [as is implied by Egs. (A2)], there will be a
corresponding discontinuity in ¢g’. Therefore, we need a jump
condition for ¢’ across the detachment point S*. This addi-
tional condition

lim[g' ($*+&)—q'(S*—¢&)]=- w

e—0"

(A7)

is derived in Appendix B.
In general, Egs. (A3) and (A4) must be solved numeri-

cally. However, for the special case where f[®]~ %@2, we
can find an analytic solution for the lipid concentration
where the cell membrane is bound to the particle. In this
bound region, the membrane curvature ¢’ =1 is fixed, and the

dimensionless concentration field obeys
ro"=2+Cy)d-2. (A8B)

Upon solving Eq. (A8) subject to the boundary conditions
given in Egs. (A5) and (A6), we find
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Cy+2 2
d(S) =A cosh | ey )
r 2+C2

In the unbound region S>S*, Egs. (A3) and (A4) cannot be
solved in closed form and numeric and asymptotic ap-
proaches are taken.

a. Weak coupling. Continuing with the approximation
fl®]=C,®%/2, we first take the weak coupling limit
a=g—0. In this weak coupling limit, Eqs. (4) imply that
C,~T ~&72. To lowest order in &, Eq. (A4) becomes

(A9)

I'd) = C,d, (A10)
in both the bound and unbound regions. Equation (A10) is
solved by

D(S) = A,V 4 4oV, (A1)
For Eq. (A11) to satisfy the boundary conditions [Egs. (A5)
and (A6)], A;=A,=0. In the unbound region, where A=0,
Eq. (A3) becomes

qﬁ:z sin qq. (A12)
Upon integrating the above equation, we find
l 3
5(q0)2= 5 (1= cos go) (A13)

and the solution
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—\328+C

qo(S) = = 4 arctan e (A14)

This result was also presented in [48]. From the jump con-
dition on ¢’ at S* [Eq. (7)], we substitute g’ (S*)=1- W into
Eq. (A13) to find

(1—\~W)2} (ALS)

qo(S*) = arccos[ 1- S

and the integration constant

R *
C:ln(LJ(S))_ \/qu(S*). (A16)
V1= go(s%) 2

We now determine for what values of 3 and W the par-
ticle is just fully wrapped—that is, mingR(S)=0 [see Fig.
3(b)]. The minimum of R(S) satisfies %:cos q(S)=0, the
only physical solution of which is ¢(S)=m/2. Thus, we re-

quire that for some S,

R(S,)=0 and ¢(S,,)= g (A17)
Using the relation, dR=cos ¢(S)dS, we have
Ser
Ro(S.)=| " cosq($)dS+R(S*)=0.  (A18)

S>:<

Frqm Eq. (A13), dS=WS‘fg(qu), so Eq. (A18) can also be
written as

1 (™  cosgq
R(Scr) = f .
\/E 4o(5*) S (Q/Z)

which leads to the relation

dg+Ry(S*) =0, (A19)

2 —m—m—m8@™ ™~ 2
= V242 cos go(S*) = V2 +In \/ -
\/;< K 90(8) = [ 1 — cos go(S*)

Upon substituting ¢o(S*) from Eq. (A15) into Eq. (A20)
we find an approximate relationship between 2, and W that
defines the boundary between the partially wrapped and fully
wrapped phases. The phase diagram for the wrapping of cy-
lindrical particles is shown in Fig. 3(c).

The effects of the first-order correction can be revealed by
considering the next-order equation for ®, [Eq. (A4)]

§F¢Y=—2q0+ §C2(D1. (AZI)
Since g~ O(1), & is O(¢*) [5=2 in Eq. (12)]. From Eq.
(A3),
2(qy - ) =24, (A22)
and we conclude that the first-order correction to ¢(S) due to
the lipid segregation is O(&?) ~ O(a?).

b. Strong coupling. Now consider the limit a=g™!

— 00,

1 - cos go(S*) I~ ) ] N
\/1 +cos 510(5*)} —In(V2 - 1) | +sin go(5%) = 0. (A20)

This implies that C, ~ I~ &2. From Egs. (A3) and (A4), we
find
qo=®, and 3 singy=0. (A23)

The outer solution gy=0 in the region §>S5* corresponds to
a flat membrane. We must match the ¢y=0 outer solution to
an inner solution in the region S=S*. This inner solution
must be constructed to satisfy both the continuity of ¢(S),
and the jump in ¢'(S) at S*.

If we rescale our surface coordinate with S=5/ &, where
£<1, Eq. (A3) becomes

1 1

2<—q" - —@') =2 sing (A24)
g ¢

within the boundary layer. Since 3 sin g=0(1), Eq. (A24)

implies
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! L (A25)
—gl~ -
§2 0 § 0
and ® ~ O(£7'). Differentiating Eq. (A4) and combining the

result with Egs. (A24) and (A25), we have

érqg” =—73 sin g.
The left-hand side of Eq. (A26) scales as O(g?/ £*) while the
right scales as O(1). We conclude that £~ & and that the
width of the boundary layer (and the radius of curvature with
which the membrane bends at the point of detachment)
scales as Ve~ a2, There is also a boundary layer in the
bound region at S=<S§* The width of this boundary layer
scales as € ~ a~!, which can be shown from Eq. (A9).

(A26)

2. Spheres

We derive equations of motion for a membrane bound to

a sphere. The Lagrange density L is taken from Eq. (10). The
resulting Euler-Lagrange equations are

R
' oL cos g . .
Pq=£=Pq +R3 sin g + Py sin g,
oL oL df[®]
Py=——=RTD’, P¢————Pq+R—,
op’ 0P dd
oL
Pr= G = e
, oL P’ P, sing -
Pp= aR—4—R’% —qR2—+2(1—00sq)+f[<I>]+ R2F
(A27)

and the boundary conditions far from the particle and at
S=0 are

lim ¢(S) = 11m D(S) = hm P.(S)=0

S—oo

(A28)

and

lim ®’(S) = lim ¢(S) = lim R(S) =0. (A29)
S—0 5—0 5—0

a. Weak coupling. We now consider the limit a=¢— 0*.
From Eq. (9), C,~T'~&72. Upon combining Eqs. (A27) for
Pg and P[I,, we find to lowest order in a~ ¢, ['Pg=RC,PD,,
which, when combined with the boundary conditions given
by Egs. (A28) and (A29), is solved by ®;=0. The remaining
lowest-order equations of Eq. (A27) are
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P’ oL Pcosq+R2 in g+ Pp si
=—= sin sin g,
q &q q R q R q
L P> P sin g
P =A, P,=—%L —q—+2 1 —cos
R= 8R' R R= AR? R? ( 61)

(A30)

where all dependent variables above are taken to represent
their zeroth-order functions. Equations Eq. (A30) are equiva-
lent to those for the wrapping of a single-component lipid
membrane [18].

b. Strong coupling. Now consider the limit =g~
where we know from Eq. (9) that C,~T ~&?. We assume
that the membrane bends with radius of curvature £<<1 near
the detachment point.

1,00

Upon making the change of variables, §— §§, the second
equation in Egs. (A27) becomes

Z 1 ' sin 90
§2R0FCI) =— 2R0<T§q0 + R_O - (DO) .

Upon substituting Pq=2R(l§q’ +%‘Z—(I>), dividing through
by R, and differentiating, we find, to lowest order,

(A31)

(P, P
3l—wq)m _ _<_‘l — —Z- CcOS q) = —E Sinq —Pr/R.
¢ E\R R
(A32)
After some consideration, the scalings &~ e, P 4~ Pr

~0(§), and P;~P;e~0(1) are found to be self-consistent
with this lowest-order approximation and lead to

1 U/

?F -2 sin gq. (A33)
Within the boundary layer, lgq(S:d)o; thus,

1

—Tgy" =3 sin qq. (A34)

¢

APPENDIX B: CURVATURE JUMP CONDITION

The Hamiltonian corresponding to the Lagrangian £ in
the cylindrical problem is

~ r
H=pg' +pe® —L=q"7-D*-3(1 —cosq)+5q)’2

—flP]+Wg(A)-Aq'. (B1)

The Lagrangian does not depend explicitly on S; H is thus
constant for all values of S. If we define the jump in any
function X(S) at the contact point S* as

[X(S)]ss = X, — X_ = lim X($* + &) — lim X(§* — &),

e—0 e—0

(B2)

we can use the fact that [H(S)]g«=0 to derive the correct
curvature jump condition. As was discussed in Sec. II A, we
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know that the derivatives ®, pg, and p, are bounded. We
conclude that these quantities are continuous and that their
respective jumps across the point at which the membrane
detaches from the particle are zero. Continuity of p, implies
that

lim N(S*—&) =A_=-2(q.—q)). (B3)

e—0"

Upon using A_ in Eq. (B1) and the fact that  is constant
across S*,
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Ho—H_ =g~ q)-W+2(qg. - q))q. =0, (B4)

leading to the only physical extremal solution of the prob-
lem:

! ! /_
q,—q.=—\W. (B5)

Note that this condition does not depend on the concentration
order parameter ®. A similar analysis for the case of a
spherical particle is straightforward and also yields the con-
dition given by Eq. (B1). This condition was also found in
[14] by careful consideration of geometry.
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